extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C10).1D6 = A4⋊Dic10 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 120 | 6- | (C2^2xC10).1D6 | 480,975 |
(C22×C10).2D6 = Dic5×S4 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6- | (C2^2xC10).2D6 | 480,976 |
(C22×C10).3D6 = Dic5⋊2S4 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).3D6 | 480,977 |
(C22×C10).4D6 = Dic5⋊S4 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).4D6 | 480,978 |
(C22×C10).5D6 = D5×A4⋊C4 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).5D6 | 480,979 |
(C22×C10).6D6 = D10⋊S4 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).6D6 | 480,980 |
(C22×C10).7D6 = A4⋊D20 | φ: D6/C1 → D6 ⊆ Aut C22×C10 | 60 | 6+ | (C2^2xC10).7D6 | 480,981 |
(C22×C10).8D6 = C5×A4⋊Q8 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 120 | 6 | (C2^2xC10).8D6 | 480,1013 |
(C22×C10).9D6 = C20×S4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 3 | (C2^2xC10).9D6 | 480,1014 |
(C22×C10).10D6 = C5×C4⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).10D6 | 480,1015 |
(C22×C10).11D6 = C10×A4⋊C4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).11D6 | 480,1022 |
(C22×C10).12D6 = C5×A4⋊D4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).12D6 | 480,1023 |
(C22×C10).13D6 = C20.1S4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 120 | 6- | (C2^2xC10).13D6 | 480,1024 |
(C22×C10).14D6 = C4×C5⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).14D6 | 480,1025 |
(C22×C10).15D6 = C20⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 6+ | (C2^2xC10).15D6 | 480,1026 |
(C22×C10).16D6 = C2×A4⋊Dic5 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).16D6 | 480,1033 |
(C22×C10).17D6 = C24⋊2D15 | φ: D6/C2 → S3 ⊆ Aut C22×C10 | 60 | 6 | (C2^2xC10).17D6 | 480,1034 |
(C22×C10).18D6 = C5×C23.6D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).18D6 | 480,125 |
(C22×C10).19D6 = C5×C23.7D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).19D6 | 480,153 |
(C22×C10).20D6 = C5×C23.8D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).20D6 | 480,758 |
(C22×C10).21D6 = C5×C23.9D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).21D6 | 480,762 |
(C22×C10).22D6 = C5×Dic3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).22D6 | 480,763 |
(C22×C10).23D6 = C5×C23.11D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).23D6 | 480,764 |
(C22×C10).24D6 = C5×C23.12D6 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).24D6 | 480,815 |
(C22×C10).25D6 = C5×D6⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).25D6 | 480,817 |
(C22×C10).26D6 = C5×C12⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).26D6 | 480,819 |
(C22×C10).27D6 = (C2×C6).D20 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).27D6 | 480,71 |
(C22×C10).28D6 = C15⋊8(C23⋊C4) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).28D6 | 480,72 |
(C22×C10).29D6 = C15⋊9(C23⋊C4) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).29D6 | 480,73 |
(C22×C10).30D6 = C23.6D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).30D6 | 480,166 |
(C22×C10).31D6 = C23.7D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | 4 | (C2^2xC10).31D6 | 480,194 |
(C22×C10).32D6 = C23.D5⋊S3 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).32D6 | 480,601 |
(C22×C10).33D6 = Dic15.19D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).33D6 | 480,602 |
(C22×C10).34D6 = (C6×Dic5)⋊7C4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).34D6 | 480,604 |
(C22×C10).35D6 = C23.13(S3×D5) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).35D6 | 480,606 |
(C22×C10).36D6 = C23.14(S3×D5) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).36D6 | 480,607 |
(C22×C10).37D6 = C23.48(S3×D5) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).37D6 | 480,608 |
(C22×C10).38D6 = D30⋊6D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).38D6 | 480,609 |
(C22×C10).39D6 = C6.(D4×D5) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).39D6 | 480,610 |
(C22×C10).40D6 = C6.(C2×D20) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).40D6 | 480,613 |
(C22×C10).41D6 = C30.(C2×D4) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).41D6 | 480,615 |
(C22×C10).42D6 = (C2×C10).D12 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).42D6 | 480,619 |
(C22×C10).43D6 = C6.D4⋊D5 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).43D6 | 480,622 |
(C22×C10).44D6 = D5×C6.D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).44D6 | 480,623 |
(C22×C10).45D6 = C23.17(S3×D5) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).45D6 | 480,624 |
(C22×C10).46D6 = (C6×D5)⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).46D6 | 480,625 |
(C22×C10).47D6 = Dic15⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).47D6 | 480,626 |
(C22×C10).48D6 = Dic5×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).48D6 | 480,627 |
(C22×C10).49D6 = C15⋊26(C4×D4) | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).49D6 | 480,628 |
(C22×C10).50D6 = (S3×C10).D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).50D6 | 480,631 |
(C22×C10).51D6 = D30⋊7D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).51D6 | 480,633 |
(C22×C10).52D6 = Dic15⋊4D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).52D6 | 480,634 |
(C22×C10).53D6 = Dic15⋊16D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).53D6 | 480,635 |
(C22×C10).54D6 = Dic15⋊17D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).54D6 | 480,636 |
(C22×C10).55D6 = D30.45D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).55D6 | 480,637 |
(C22×C10).56D6 = D30.16D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).56D6 | 480,638 |
(C22×C10).57D6 = (C2×C30)⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).57D6 | 480,639 |
(C22×C10).58D6 = (C2×C6)⋊8D20 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).58D6 | 480,640 |
(C22×C10).59D6 = (S3×C10)⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).59D6 | 480,641 |
(C22×C10).60D6 = (C2×C10)⋊4D12 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).60D6 | 480,642 |
(C22×C10).61D6 = Dic15⋊5D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).61D6 | 480,643 |
(C22×C10).62D6 = Dic15⋊18D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).62D6 | 480,647 |
(C22×C10).63D6 = D30⋊18D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).63D6 | 480,648 |
(C22×C10).64D6 = D30⋊19D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).64D6 | 480,649 |
(C22×C10).65D6 = (C2×C30)⋊Q8 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).65D6 | 480,650 |
(C22×C10).66D6 = Dic15.48D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).66D6 | 480,652 |
(C22×C10).67D6 = C23.15D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).67D6 | 480,842 |
(C22×C10).68D6 = C22⋊2Dic30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).68D6 | 480,843 |
(C22×C10).69D6 = C23.8D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).69D6 | 480,844 |
(C22×C10).70D6 = C22⋊C4×D15 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).70D6 | 480,845 |
(C22×C10).71D6 = Dic15⋊19D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).71D6 | 480,846 |
(C22×C10).72D6 = D30⋊16D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).72D6 | 480,847 |
(C22×C10).73D6 = D30.28D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).73D6 | 480,848 |
(C22×C10).74D6 = D30⋊9D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).74D6 | 480,849 |
(C22×C10).75D6 = C23.11D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).75D6 | 480,850 |
(C22×C10).76D6 = C22.D60 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).76D6 | 480,851 |
(C22×C10).77D6 = D4×Dic15 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).77D6 | 480,899 |
(C22×C10).78D6 = C23.22D30 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).78D6 | 480,900 |
(C22×C10).79D6 = C60.17D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).79D6 | 480,901 |
(C22×C10).80D6 = C60⋊2D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).80D6 | 480,903 |
(C22×C10).81D6 = Dic15⋊12D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).81D6 | 480,904 |
(C22×C10).82D6 = C60⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).82D6 | 480,905 |
(C22×C10).83D6 = C2×C30.C23 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).83D6 | 480,1114 |
(C22×C10).84D6 = C2×Dic3.D10 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).84D6 | 480,1116 |
(C22×C10).85D6 = C2×D4⋊2D15 | φ: D6/C3 → C22 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).85D6 | 480,1170 |
(C22×C10).86D6 = C5×C23.16D6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).86D6 | 480,756 |
(C22×C10).87D6 = C5×Dic3.D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).87D6 | 480,757 |
(C22×C10).88D6 = C5×S3×C22⋊C4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).88D6 | 480,759 |
(C22×C10).89D6 = C5×Dic3⋊4D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).89D6 | 480,760 |
(C22×C10).90D6 = C5×D6⋊D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).90D6 | 480,761 |
(C22×C10).91D6 = C5×C23.21D6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).91D6 | 480,765 |
(C22×C10).92D6 = C5×D4×Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).92D6 | 480,813 |
(C22×C10).93D6 = C5×C23.23D6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).93D6 | 480,814 |
(C22×C10).94D6 = C5×C23.14D6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).94D6 | 480,818 |
(C22×C10).95D6 = C10×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).95D6 | 480,1155 |
(C22×C10).96D6 = C30.24C42 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).96D6 | 480,70 |
(C22×C10).97D6 = C2×Dic3×Dic5 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).97D6 | 480,603 |
(C22×C10).98D6 = C23.26(S3×D5) | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).98D6 | 480,605 |
(C22×C10).99D6 = C2×D10⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).99D6 | 480,611 |
(C22×C10).100D6 = (C2×C30).D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).100D6 | 480,612 |
(C22×C10).101D6 = C2×D6⋊Dic5 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).101D6 | 480,614 |
(C22×C10).102D6 = C2×D30⋊4C4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).102D6 | 480,616 |
(C22×C10).103D6 = C2×C30.Q8 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).103D6 | 480,617 |
(C22×C10).104D6 = C10.(C2×D12) | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).104D6 | 480,618 |
(C22×C10).105D6 = C2×Dic15⋊5C4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).105D6 | 480,620 |
(C22×C10).106D6 = C2×C6.Dic10 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).106D6 | 480,621 |
(C22×C10).107D6 = Dic3×C5⋊D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).107D6 | 480,629 |
(C22×C10).108D6 = S3×C23.D5 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).108D6 | 480,630 |
(C22×C10).109D6 = C15⋊28(C4×D4) | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).109D6 | 480,632 |
(C22×C10).110D6 = C15⋊C22≀C2 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).110D6 | 480,644 |
(C22×C10).111D6 = (C2×C6)⋊D20 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).111D6 | 480,645 |
(C22×C10).112D6 = (C2×C10)⋊11D12 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).112D6 | 480,646 |
(C22×C10).113D6 = (C2×C10)⋊8Dic6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).113D6 | 480,651 |
(C22×C10).114D6 = C22×D5×Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).114D6 | 480,1112 |
(C22×C10).115D6 = C2×Dic5.D6 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).115D6 | 480,1113 |
(C22×C10).116D6 = C22×S3×Dic5 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).116D6 | 480,1115 |
(C22×C10).117D6 = C22×D30.C2 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).117D6 | 480,1117 |
(C22×C10).118D6 = C22×C15⋊D4 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).118D6 | 480,1118 |
(C22×C10).119D6 = C22×C3⋊D20 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).119D6 | 480,1119 |
(C22×C10).120D6 = C22×C5⋊D12 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).120D6 | 480,1120 |
(C22×C10).121D6 = C22×C15⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).121D6 | 480,1121 |
(C22×C10).122D6 = C5×C12.48D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).122D6 | 480,803 |
(C22×C10).123D6 = C5×C23.26D6 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).123D6 | 480,805 |
(C22×C10).124D6 = C20×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).124D6 | 480,807 |
(C22×C10).125D6 = C5×C23.28D6 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).125D6 | 480,808 |
(C22×C10).126D6 = C5×C12⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).126D6 | 480,809 |
(C22×C10).127D6 = C10×C6.D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).127D6 | 480,831 |
(C22×C10).128D6 = C5×C24⋊4S3 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).128D6 | 480,832 |
(C22×C10).129D6 = C10×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).129D6 | 480,1153 |
(C22×C10).130D6 = C30.29C42 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).130D6 | 480,191 |
(C22×C10).131D6 = C2×C4×Dic15 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).131D6 | 480,887 |
(C22×C10).132D6 = C2×C30.4Q8 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).132D6 | 480,888 |
(C22×C10).133D6 = C60.205D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).133D6 | 480,889 |
(C22×C10).134D6 = C2×C60⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).134D6 | 480,890 |
(C22×C10).135D6 = C23.26D30 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).135D6 | 480,891 |
(C22×C10).136D6 = C2×D30⋊3C4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).136D6 | 480,892 |
(C22×C10).137D6 = C4×C15⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).137D6 | 480,893 |
(C22×C10).138D6 = C23.28D30 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).138D6 | 480,894 |
(C22×C10).139D6 = C60⋊29D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).139D6 | 480,895 |
(C22×C10).140D6 = C2×C30.38D4 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).140D6 | 480,917 |
(C22×C10).141D6 = C24⋊5D15 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 120 | | (C2^2xC10).141D6 | 480,918 |
(C22×C10).142D6 = C22×Dic30 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).142D6 | 480,1165 |
(C22×C10).143D6 = C22×C4×D15 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).143D6 | 480,1166 |
(C22×C10).144D6 = C22×D60 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).144D6 | 480,1167 |
(C22×C10).145D6 = C2×D60⋊11C2 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 240 | | (C2^2xC10).145D6 | 480,1168 |
(C22×C10).146D6 = C23×Dic15 | φ: D6/C6 → C2 ⊆ Aut C22×C10 | 480 | | (C2^2xC10).146D6 | 480,1178 |
(C22×C10).147D6 = C5×C6.C42 | central extension (φ=1) | 480 | | (C2^2xC10).147D6 | 480,150 |
(C22×C10).148D6 = Dic3×C2×C20 | central extension (φ=1) | 480 | | (C2^2xC10).148D6 | 480,801 |
(C22×C10).149D6 = C10×Dic3⋊C4 | central extension (φ=1) | 480 | | (C2^2xC10).149D6 | 480,802 |
(C22×C10).150D6 = C10×C4⋊Dic3 | central extension (φ=1) | 480 | | (C2^2xC10).150D6 | 480,804 |
(C22×C10).151D6 = C10×D6⋊C4 | central extension (φ=1) | 240 | | (C2^2xC10).151D6 | 480,806 |
(C22×C10).152D6 = C2×C10×Dic6 | central extension (φ=1) | 480 | | (C2^2xC10).152D6 | 480,1150 |
(C22×C10).153D6 = S3×C22×C20 | central extension (φ=1) | 240 | | (C2^2xC10).153D6 | 480,1151 |
(C22×C10).154D6 = C2×C10×D12 | central extension (φ=1) | 240 | | (C2^2xC10).154D6 | 480,1152 |
(C22×C10).155D6 = Dic3×C22×C10 | central extension (φ=1) | 480 | | (C2^2xC10).155D6 | 480,1163 |